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“Theory” vs. Experiment

DEHZ 03 (e*e -based)
180.9+8.0

DEHZ 03 (t-based : L :
195.6 + 6.8 ( ) : Deviation ~ 3-3.8 sigma

HMNT 03 (e*e -based)
176.3+7.4

J 03 (e'e -based)
179.4+9.3 (preliminary)

TY 04 (e*e -based)
180.6 £5.9 (preliminary) — '

DEHZ ICHEP 2006 (e*e"- -based)
180.5+5.6 (preliminary) I ®

BNL-E821 04 |
208 + 5.8 !

Davier, arXiv:1001:2243

Fermilab experiment will start
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Outline

Muon g—2 and current theory for HLO
HLO: O(ax?) Contribution—Vacuum Polarization

(g—2)1° from first principles:
Lattice Gauge Theory

Lattice results for vacuum polarization

Preliminary fits for g—2
VMD vs. Pade Approximants
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+ other non-QCD terms...
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Hadronic contributions

Vacuum Polarization

‘ Light by light '

I'll focus on the leading hadronic

contribution, the vacuum polarization
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Leading Hadronic Contribution

The O(aQ) hadronic contribution, aELO,

cannot be calculated in perturbation theory.

Via the Optical theorem, one can evaluate it
using o(eTe~ — hadrons).

( The kernel, K(s), is known, and R(s) can be measured experimentally W

Not a theoretical problem since 196!
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o(ete~ — hadrons)
olete” — putu~)

R(s)

The precision of the Standard Model prediction is limited
by the experimental measurement of R(s).
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(from Davier et al, hep-ph/0208177)
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Lattice QCD

Use staggered quarks (MILC collaboration):

Large volumes
Small quark masses
High statistics

Asqtad staggered (reduced lattice spacing errors)
3 lattice spacings (that we use)
pion masses as low as 180 MeV

Future: HISQ quarks with nearly physical pion
masses
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Leading Hadronic Contribution

We can extract the O(x?) hadronic contribution to ay from the vacuum
polarization using the Euclidean space expression (Blum, 2003)

aII(LQ)had,LO — (& 2 OOO ) [H(Kz) - H(O)}

f(K?) diverges as K?—0 = dominated by low momentum region )

=Need large lattices to simulate these low momenta accurately
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Lattice Calculation of I1#¥(q)

Calculate the vacuum polarization using the conserved current

In the continuum we have the conserved (local) EM current:
S =Pyt

While on the lattice it is a point-split current:

‘],LL r % [w:c—ka,&UZ,a:(l -+ %)%: T @xUMCU(]- o %L)%ﬁraﬂ}
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Lattice Calculation of I1#¥(q)

On the lattice this satisfies a discrete Ward Identity, so
we modify the expressions above

The finite volume restricts the momenta:

This provides a strong check on the simulation!
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Lattice Calculation of I1#¥(q)

To perform lattice calculation:
Wick contract the quark fields in the current, giving two types of contractions:

We neglect second contraction for now (suppressed, also very noisy)

Hard to fit low-momentum region — Also most important part
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(No lattice talk is complete without a table of numbers in unphysical units only the speaker understands)

2+ | -flavor MILC “Asqtad” staggered configurations

a (fm) am; amg 5 size m,L | # lats.
avail.
[z 0.09* | 0.0124 | 0.031 | 7.11 | 28 x 96 | 5.78 | 531 ]
~ 0.09* | 0.0062 | 0.031 | 7.09 | 28° x96 | 4.14 | 591
~ 0.09 | 0.00465 | 0.031 | 7.085 | 32° x 96 | 4.10 | 480
(= 0.09* | 0.0031 | 0.031 | 7.08 | 40° x 96 | 4.22 | 945 )
(~ 0.09% | 0.00155 | 0.031 | 7.075 | 64° x 96 | 4.80 | 491
L~ 0.09 | 0.0031 | 0.0031 | 7.045 | 40° x 96 | 4.20 | 440
(~ 0.06" | 0.0036 | 0.018 | 7.47 | 483 x 144 | 450 | 751
~ 0.06" | 0.0025 | 0.018 | 7.465 | 563 x 144 | 4.38 | 768
~ 0.06* | 0.0018 | 0.018 | 7.46 | 64° x 144 | 4.27 | 826
~ 0.045 | 0.0028 | 0.014 | 7.81 | 64° x 192 | 4.56 | 801

Now: 3 lattice spacings, and pion masses as low as

~|80 MeV
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All (new) simulations were performed using USQCD
Lattice resources here at Fermilab
(the Ds and J/Psi clusters)
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All results (thus far)

0.15

a =0.045,0.06,0.09 fm

0.14}

0.13H

0.12f

0.09

0.08

0.07

2
Pmax

— 925.7 GeV?

m._=312 MeV, 94 confs
m_=315 MeV, 292 confs
m. =260 MeV, 316 confs
m._=220 MeV, 316 confs
m._ =450 MeV, 129 confs
m. =324 MeV, 249/42 confs
m._=230 MeV, 161/51 confs
m,. =180 MeV, 533 confs
m._=230 MeV, 278 confs
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Fitting
Can’t calculate the vacuum polarization at g?=0 directly

For high momentum, continuum PT works

For low momentum:

Simple polynomials?

No good beyond cubic/quartic order in g?

Vector Meson Dominance/ChPT

Pade Approximants
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Vector Meson Dominance

A is related to rho decay constant — in principle
could determine both this and the rho mass
from simulations, thus only B is a free parameter

For small pion masses, the two-pion state is the
lightest state in this channel — can’t measure rho mass (yet)!
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Rho decay

On our lightest fine (a=0.09 fm) lattice, the rho can “decay”

Here, the rho mass cannot be extracted very easily, since

amghys ~ 0.35 (= am}oat)

And the two smallest non-zero spatial momenta allowed are

27 2\/_7T
ap = 7,

For a two pion state with rho quantum numbers:

‘aFs, = 0.2374,0.3081 < am,,

FORDHAM UNIVERSITY

%> THE JESUIT UNIVERSITY OF NEW YORK

Sunday, June 17, 2012



Can be seen to affect the vacuum polarization!

a=0.09fm

I !

m, =450 MeV, 129 confs
m,. =324 MeV, 249/42 confs
m, =230 MeV, 161/51 confs
m,.=170 MeV, 533 confs

0.08} o ;3'%' .

0.07f

0.2 0.4 0.6 0.8 1.0
p° (GeV?)
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This must be understood theoretically, as it clearly effects the
low-energy regime — cannot get a fully reliable result without it!

Also tricky to use rho mass as a fixed parameter in fits
— without a complete study of mixing with 2-pion state

(p|2m)
(27| 27)

(plp)
(27|p)

Need a full finite-volume analysis to
disentangle the rho and 2 pion states
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Pade Approximants arXiv:1205.3695

I1(0) — T1(Q?) _ ~ p(t) _ 2
Q? B ng dtt(t +Q?%) 7

is a Stieltjes function, analytic at all points not on the cut (—OO, —4m727]

Given P points (Q%, ®(Q?)), a sequence of Padé Approximants can be
constructed which converge to ®(Q?#) on any closed, bounded region
of the complex plane excluding the cut, in the limit P — oo.

(Baker 1969, Barnsley 1973)
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Pade Approximants

| P/2] .
This can be AN 2 n
written as H(Q ) N H(O) B Q . _|_ 7;1 bn _I_ Q2

Apn>o > 0, bLP/QJ > .--by >4dm

if P is even: apgp — O

For different values of P, P 2 4
we fit to different Padeé’s Padé [0,1] [1,1] [1,2]
For comparison, we will cut off the integral for the g-2 at (I GeV)?

Note that VMD is a [0, 1] Pade, but with its pole
fixed to be the vector mass, and as such is not a
valid Pade for our purposes!
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Test on fine MILC lattices (pion mass = 480 MeV)

interval 0 < Q% < 0.6 GeV?

correlated

uncorrelated
interval 0 < Q% <1 GeV?

# parameters

x?*/dof

1010aHLO,Q2§1
u

x?/dof

1010aHLO,Q2§1
)

2

5.86/3"
11.4/8
7.49/7
7.49/6
7.49/5

1.37/18
3.58/17
3.36/16
3.35/15
3.35/14

113(3)

373(37)
424(116)
143(293)
445(432)

* interval 0 < Q* < 0.35 GeV?

Correlated Padé’s are stable — better with more parameters

Higher poles ill-determined (does not affect g-2)

Consistent unless one compares uncorrelated VMD with the correlated fits
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[I,1] Pade, corr (solid) vs. uncorr (dashed)

1\

0.095F \»
0.090}
‘S 0.085}
0.080}

0.075f

0'07%. 0.4 0.6 0.8
Q* (GeV?)

Correlated fits systematically low
All fits have reasonable chi?

“By eye” — no way to choose
one fit over another
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0.100

Pade, corr (solid) vs.VMD uncorr (dashed)

\

0.095F N\

0.090

‘S 0.085}

0.0801

0.075f RN

0.07(8)

0.4 0.6 0.8 1.0

Q* (GeV?)

Superfine results:
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a=0.061tfm m,. =220 MeV

[I,1] Pade (corr):

aILO-Q7S1 — 579(41) x 101

VMD (uncorr):

afILOQ=L — 646(8) x 101
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Difficult

— [1,1] Pade fit

i /8% of the integral
comes from this region
“Hoo 0.05 0.10 0.15 0.20
K* (GeV?)
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Note that fits can be misleading!

Unknown systematics are hidden in VMD fits
Any fits which use data primarily excluding low momentum
region should be met with caution!

| 7% discrepancy between VMD & Pade fits

Primary Problems:
Low momentum (Large volumes/TBC’s)
Statistics (AMA)
Disconnected contributions (definitely essential for ~5% unc)
Light quark masses (soon not a problem)

-
Chiral Extrapolation?
Soon to be irrelevant — HISQ ensembles with near-physical
pion mass
\
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__Note that fits can be m|slead|ng'

— - .

~— _

—
~
— ~

Unknown systematics are hidden in VMD fits ,
Any fits which use data primarily excluding low momentum "\
region should be met with caution!

_|17% discrepancy between VMD & Pade fits -

(
i

Non-trivial problem!;

-
Chiral Extrapolation?
Soon to be irrelevant — HISQ ensembles with near-physical
pion mass
\ .
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Conclusions

Full results still yet to come, analysis complicated by light masses...

Immediate future:
Better statistics using all-mode averaging (in progress)
Thus improved fits (able to get higher Pade poles?)
Begin simulations on HISQ ensembles with nearly physical pion mass

Additionally:
Need to fill in low momentum region (twisted boundary conditions)

Longer term:
Include disconnected diagrams

Stay tuned!
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